$f(x) = _$

Basic: Absolute Value, Power, Exponential, and Logarithmic Functions

Recall that the absolute value function f(x) = |x| will output the positive value of the input. This means that its range is just the positive numbers (and zero). The graph has a "V" shape.

(1) Work with your partner to write two functions f and g which involve absolute value.

(2) Make a table of input and output values for each function defined in Problem #1.

x	-3	-2	-1	0	1	2	3
f(x)							
g(x)							

g(x) =_____

(3) Graph each function from Problem #1. (Please ensure your chosen functions are visible on the grid.)

Recall that a power function $f(x) = kx^p$ with coefficient k and power p will look like a polynomial or rational function for integer values of p and a square or cube root for certain fraction values of p.

(4) Work with your partner to write two power functions f and g.

 $f(x) = _____ g(x) = _____$

(5) Make a table of input and output values for each function defined in Problem #4.

x	-3	-2	-1	0	1	2	3
f(x)							
g(x)							

Name: _____

Calculus – Lesson 4: Other Types of Functions (page 2) Upward Bound Summer 2018

Name:

(6) Graph each function from Problem #4. (Please ensure your chosen functions are visible on the grid.)

Recall that an exponential function $f(x) = ab^x$ grows very quickly (faster than any polynomial) if b > 1 and decreases quickly toward 0 if 0 < b < 1. Remember any exponential function may also be written in the form $f(x) = ae^{kx}$, where *e* is Euler's number (approximately 2.71).

(7) Work with your partner to write two exponential functions f and g.

f(x) =_____

g(x) =_____

(8) Make a table of input and output values for each function defined in Problem #7.

x	-3	-2	-1	0	1	2	3
f(x)							
g(x)							

(9) Graph each function from Problem #7. (Please ensure your chosen functions are visible on the grid.)

Calculus – Lesson 4: Other Types of Functions (page 3) Upward Bound Summer 2018

Name: _____

Recall that the logarithm function is the inverse of the exponential function. Its graph therefore looks similar to an exponential graph, but it is a mirror image across the line y = x, so it has a vertical asymptote instead of a horizontal asymptote.

(10) Work with your partner to write two functions f and g which involve logarithms.

 $f(x) = _$

g(x) =_____

(11) Make a table of input and output values for each function defined in Problem #10.

x	-3	-2	-1	0	1	2	3
f(x)							
g(x)							

(12) Graph each function from Problem #10. (Please ensure your chosen functions are visible on the grid.)

Intermediate: Trigonometric Functions

Recall that there are 6 different trig functions: sine, cosine, tangent, cotangent, secant, and cosecant. The sine and cosine graphs both look like waves with default period 2π and default amplitude of 1.

Let $f(x) = \sin(x)$ and $g(x) = \cos(x)$.

(13) Make a table of input and output values for each function.

x	$-\pi$	$-\pi/2$	0	$\pi/2$	π	$3\pi/2$	2π
f(x)							
$\boldsymbol{g}(\boldsymbol{x})$							

Calculus – Lesson 4: Other Types of Functions (page 4) Upward Bound Summer 2018

Name: _____

(14) Graph each function.

The tangent and cotangent graphs have default period π and a range covering all the real numbers.

Let $f(x) = \tan(x)$ and $g(x) = \cot(x)$.

(15) Make a table of input and output values for each function.

x	$-\pi/2$	$-\pi/4$	0	$\pi/4$	$\pi/2$	$3\pi/4$	π
f(x)							
g(x)							

(16) Graph each function.

Calculus – Lesson 4: Other Types of Functions (page 5) Upward Bound Summer 2018

Name: _____

The secant and cosecant graphs have default period 2π and look like a collection of disconnected U's.

Let
$$f(x) = \sec(x)$$
 and $g(x) = \csc(x)$.

(17) Make a table of input and output values for each function.

x	$-\pi$	$-\pi/2$	0	$\pi/2$	π	$3\pi/2$	2π
f(x)							
g(x)							

(18) Graph each function.

Advanced: Piecewise-Defined Functions

A **piecewise-defined function** is a function which is defined differently on different parts of its domain.

For example, $f(x) = \begin{cases} -x, & x < 0 \\ -x^2, & x \ge 0 \end{cases}$

(19) Work with your partner to define another piecewise-defined function g.

$$g(x) =$$

(20) Make a table of input and output values for these functions.

x	-3	-2	-1	0	1	2	3
f(x)							
$\boldsymbol{g}(\boldsymbol{x})$							

Calculus – Lesson 4: Other Types of Functions (page 6) Upward Bound Summer 2018

Name: _____

(21) Graph these functions. (Please ensure your chosen function is visible on the grid.)